Secondary Math 2

Unit 1: Algebra Basics

Unit 1.1: Classifying Polynomials

Polynomial Terminology	Definition	Examples
Coefficient		
Constant		
Term		
Degree		
Polynomial		

Polynomials can be classified by the number of **TERMS** in the polynomial and by the **DEGREE** of the polynomial.

Classify by the # of **TERMS**:

One Term	Two Terms	Three Terms	Any # of Terms

Classify by the DEGREE of the polynomial:

Linear	Quadratic	Cubic

Example 1: Classify each polynomial by # of terms and the Degree.	List all coefficients and all
constants.	

a)
$$-10b - 1$$

b)
$$-2a^2 - 3a + 7$$

of Terms:

of Terms:

Degree:

Degree:

Coefficients:

Coefficients:

Constants:

Constants:

c)
$$-r^3$$

d)
$$-6x^6 + 8x^4 + 2x^2 + x$$

of Terms:

of Terms:

Degree:

Degree:

Coefficients:

Coefficients:

Constants:

Constants:

Example 2: Write a polynomial expression that contains the following:

- a) A third degree trinomial with a constant
- b) A quadratic binomial with a coefficient that is negative
- c) A fourth degree polynomial with four terms that has coefficients that are not one and has a constant.

Unit 1.2: Distributive Property, Add/Subtract/Multiplying Polynomials

Let's take a minute to review a few skills that you have learned in previous courses.

DISTRIBUTIVE PROPERTY

Remember to **MULTIPLY** the number outside the parenthesis to every term inside the parenthesis. (Including the **NEGATIVE** if there is one!!)

Example 2: Simplify each expression a) 9(1 - 8x)

b)
$$-9(9n + 8)$$

c)
$$4 - 6(9a - 4)$$

d)
$$7(8+8k)+1$$

e)
$$5(3-7x)-(1-6x)$$

ADDING AND SUBTRACTING POLYNOMIALS

*Look at the operation (+ or -) in between the polynomials.

*Do that operation to combine terms from each polynomial. Be VERY CAREFUL when subtracting.

*Make sure your solution is in the proper order:

Largest exponent first ... this is called **STANDARD FORM.**

Example 4: Add or Subtract.

a)
$$(2n-7) + (2n+3)$$

a)
$$(2n-7)+(2n+3)$$
 b) $(k^3-3)+(5+6k^3)$ c) $(8p-7)-(p-5)$

c)
$$(8p-7)-(p-5)$$

d)
$$(5-3m^2)-(6-8m^2)$$

e)
$$(9r^2 - 7r) - (2r - r^2)$$

f)
$$(2n-7) + (n+4+3n^3)$$

g)
$$(4-3x)-(2-x^2-2x)$$

MULTIPLYING POLYNOMIALS

Multiplying polynomials is like using the distributive property ... **twice!** Combine like terms to finish.

Remember

*
$$a + a =$$

*
$$a^2 \cdot a =$$

*
$$a \cdot a =$$

*
$$2a^3 \cdot 3a^2 =$$

Example 5: Find each product.

a)
$$(3x + 6)(2x + 6)$$

b)
$$(2v-4)(5v-4)$$

c)
$$(3n-4)(8n-1)$$

d)
$$(5b^2 + 2)(7b - 6)$$

e)
$$(3x + 1)^2$$

f)
$$-(y-3)(2y+5)$$

Unit 1.3: Properties of Exponents	Example:
» An is a quantity that shows the number of times a given number is being by	2 · 2 · 2 ==
» An exponential term contains a and a (also known as the exponent)	Example: a^n is the base and is the power.

PROPERTIES OF EXPONENTS

Property	Definition	Examples
Product of Powers		$x^3 \cdot x^2$
		» 2 ⁴ · 2 ⁸
		» $v^3 \cdot y^7 \cdot v^5$
Quotient of Powers		$ > \frac{x^5}{x^2} = $
		$\frac{5^{14}}{5^9} =$
Zero		» y ⁰ =
		$(2w)^0 =$
		$ > 5r^0 = $
Negative Exponent		$ * t^{-7} = $
		$=\frac{1}{(5r^{-1})}=$
Power of a Power		$(x^2)^3 =$
		$(2x^4)^2 =$ $(2x \cdot 3y)^4$
		$(2x \cdot 3y)^4$

<u>Example 1:</u> Simplify each expression. Your answer should contain only positive exponents.

a) $2n \cdot 2n$

b) $(r^2)^3$

c) $(5x)^2$

d) $2n \cdot n^4$

e) $3x^3 \cdot 2x^2$

f) $3k^{-3}k^2$

g) $3n^{-3} \cdot 2n$

h) $(2b^4)^3$

i) $(5t)^0$

j) $(2p^{-2})^{-3}$

k) $(3r^{-1})^3$

 $1) \frac{x^5}{x^2}$

m) $\frac{(x^{-2})^{-2}}{3x}$

n) $2n^34m^4n^4$

o) $4xy^2 \cdot 2x^3y^{-3}$

p) $\frac{2^{-1}}{(2^4)^2 \cdot 2^2}$

q) $\frac{2n^{-2}\cdot(2^{-1})^{-3}}{2n}$

r) $\frac{2x^3 \cdot x^2}{(2x^2)^{-1}}$

Everything we have practiced up until this point has had integer exponents. Sometimes, however, our exponents are rational meaning the exponents are

Before we work with rational exponents – let's take a minute and review operations with fractions.

Add/Subtract	$\frac{2}{3} + \frac{5}{9}$	$\frac{1}{4} - \frac{3}{5}$
Multiply	$\frac{2}{3} \cdot \frac{2}{5}$	$\frac{1}{3} \cdot \frac{6}{7}$
Divide	$\frac{2}{3} \div \frac{1}{2}$	$\frac{7}{4} \div 14$

Example 2: Simplify each expression. Your answer should contain only positive exponents.

a)
$$3n^2 \cdot 4n^{\frac{1}{2}}$$

b)
$$(r^2)^{\frac{1}{2}}$$

c)
$$\chi^{\frac{1}{3}}\chi^{\frac{1}{3}}$$

d)
$$n \cdot n^{\frac{4}{3}}$$

e)
$$\left(v^{\frac{2}{3}}\right)^{\frac{1}{2}}$$

f)
$$3k^{\frac{-1}{2}}k^2$$

g)
$$\frac{2x^{\frac{3}{2}}}{2x}$$

h)
$$\frac{b^{\frac{1}{2}}}{4b^{\frac{3}{2}}}$$

i)
$$\frac{4v^{\frac{3}{2}} \cdot 6y^{-\frac{1}{4}}}{2v^{-1} \cdot y^{\frac{1}{2}}}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

What do the numbers mean when we are writing an expression with a rational exponent? The numerator of the ______ inside the _____. The denominator is the _____.

<u>Example 3:</u> Write each expression in exponential form:

a)
$$\left(\sqrt[5]{x}\right)^8$$

b)
$$\sqrt[3]{(6x)^2}$$

c)
$$\left(\sqrt{x}\right)^6$$

<u>Example 4</u>: Write each expression in radical form:

a)
$$v^{\frac{1}{2}}$$

b)
$$(3n)^{\frac{7}{4}}$$

c)
$$2x^{\frac{4}{3}}$$