3-5 Classwork

Date Period

Solve Each Polynomial Equation

1)
$$x^3 + 5x^2 + 7x + 3 = 0$$

2)
$$x^3 - 3x^2 - x + 3 = 0$$

3)
$$x^3 - 5x^2 + 11x - 15 = 0$$

4)
$$x^3 - 2x - 4 = 0$$

5)
$$x^4 - 5x^3 - x^2 + 5x = 0$$

6)
$$x^3 + 5x^2 - 43x + 57 = 0$$

7)
$$x^3 + x^2 - 38x - 96 = 0$$

8)
$$x^5 - 7x^4 + 6x^3 + 22x^2 - 7x - 15 = 0$$

9) The base of a triangle is 4m longer than the height. Find the height if the area of the triangle is $16m^{2}$.

10) The product of three consecutive integers is 120. Find the three integers.

	A garden that is $4m$ wide and $6m$ long is to have a uniform path around it such that the area of the path is the same as the area of the garden. Find the width of the path.
	One leg of a right triangle is 3 feet longer than the other leg. The hypotenuse is 15 feet. Find the area of the triangle.
	9. If the polynomial $x^3 - 2x^2 - 11x + 12$ expresses volume in cubic inches of a box. Find the linear expressions that represent the length and height of the box.
Determine whether each of the following statements is always, sometimes, or never true. Explain.	
-	A polynomial function wiht real coefficients has real zeros.
15) 4	A polynomial function that does not intercept the <i>x</i> -axis has complex (imaginary) roots only.
Who is right?	
(Maurice says: "Every linear function has exactly one zero. It follows the Fundamental Theorem of Algebra." Cheryl disagrees. "What about the linear function $y = 2$?" she asks. "Its graph is a line, but it has no x -intercept." Whose reasoning is incorrect? Where is the flaw?